

SkewTplus – Atmospheric Profile Plotting and Diagnostics

The SkewTplus package provides tools to easily read atmospheric sounding data from
different formats (University of Wyoming and ARM)
and create SkewT sounding plots along with parcel diagnostics (CAPE,CIN,etc.).

This package is based on the SkewT Python package developed by Thomas Chubb
(https://pypi.python.org/pypi/SkewT/)

The main difference with the original SkewT package is that the vertical soundings
plots are handled by a special class (SkewT).
The new SkewT class extends the base
matplolib’s Figure [http://matplotlib.org/api/figure_api.html?highlight=figure#module-matplotlib.figure]
class with an interface similar to
matplolib’s pyplot [http://matplotlib.org/api/pyplot_api.html].
It also allows to create Skew-T type plots in a simple way.
This new class allows a complete control over the Figure properties like
multiple plots (normal axis and Skew-T axis).

In addition, the thermodynamics module was improved.
All the intensive computations were migrated to Cython and parallelized.

The SkewT Python package was a cornerstone of this project.
We are grateful to all its collaborators.

Technology builds on technology

Documentation

The documentation is separated in two big branches.
The User Reference and the Developer Reference.
The user reference provides a quick overview of the most important features of
the package. For more detailed and a comprehensive understanding of the
package the reader must consult the Developer Reference.

	User Reference

	Developer Reference

	SkewTplus – License

Dependencies

The SkewTplus package need the following dependencies

	matplotlib

	numpy

	cython (optional)

	netCDF4

	six

	future (python2)

	hdf4

	libgcc >=5

	requests

For running the WRF data example:

	Basemap

Installing SkewTplus

IMPORTANT - OSX installation

Before installing the package, be sure that Numpy is installed.
Then, install the apple’s Xcode application by running:

xcode-select --install

Before running the pip or the setup commands execute:

export CC=clang ; export CXX=clang

Then you can continue with any of the following installation procedures.

Nevertheless pip is highly recommended.

PIP install

To install the package using pip the numpy package must be already installed.
If is not installed, you can install it by running:

pip install numpy

After the numpy package was installed, to install the SkewTplus package run:

pip install SkewTplus

Install from source

The latest version can be installed manually by downloading the sources from
https://github.com/aperezhortal/SkewTplus

To install the package manually, the numpy package must be already installed.
If is not installed, you can install it by running:

pip install numpy

Then, you can install the SkewTplus package executing:

python setup.py install

If you want to put it somewhere different than your system files, you can do:

python setup.py install --prefix=/path/to/local/dir

IMPORTANT: If you install it using this way, all the dependencies need to be already installed!

Conda install - Only available linux users

If you are using an anaconda environment, to install the package execute:

conda install -c andresperezcba skewtplus

Contributions

SkewTplus is an open source software project.
Contributions to the package are welcomed from all users.
Feel free to suggest enhancements or report bugs by opening an issue in the github project page:

https://github.com/aperezhortal/SkewTplus/issues

Thanks for using the SkewTplus package, for any feedback feel free to write to
andresperezcba AT gmail DOT com

Code

The latest source code can be obtained with the command:

git clone https://github.com/aperezhortal/SkewTplus.git

If you are planning on making changes that you would like included in SkewTplus,
forking the repository is highly recommended.

User Reference

This reference guide is intended to go through the most important
capabilities of SkewTplus package.
For further details on the full contents of each module, see Developer Reference.

The User Reference has the following chapters

	Fist-Steps
	Fist steps using SkewTplus

	Sounding Initialization
	University of Wyoming Sounding Data

	ARM Sounding Data

	From a dictionary

	Adding Fields Manually

	Profile Plotting

	Parcel Analysis
	parcelAnalysis Function

	WRF Output CAPE plot

Fist-Steps

This chapter offers a quick overview of the main package capabilities:
To read a sounding from a txt file and create a quick SkewT diagram.

Fist steps using SkewTplus

From now on, it’s assumed that the package is installed and the current working
directory is the examples one, included in this package.

To read a sounding from a txt file and create a quick plot using the default
parameters we only have to do:

from SkewTplus.sounding import Sounding

#Load the sounding data
mySounding = sounding("./exampleSounding.txt")
mySounding.quickPlot()

The resulting plot will look like this:

[image: ../_images/soundingQuickView.png]
Now we can do the same thing, but with more control over the Figure:

Import the new figure class
from SkewTplus.skewT import figure

from SkewTplus.sounding import sounding

#Load the sounding data
mySounding = sounding("./exampleSounding.txt")

Create a Figure Manager
mySkewT_Figure = figure()

Add an Skew-T axes to the Figure
mySkewT_Axes = mySkewT_Figure.add_subplot(111, projection='skewx')

Extract the data from the Sounding
pressure = mySounding.soundingdata['pres']
temperature = mySounding.soundingdata['temp']
dewPointTemperature = mySounding.soundingdata['dwpt']

Add a profile to the Skew-T diagram
method=0 -> Most unstable parcel
diagnostics -> add a text box in the Figure with the parcel analysis results
mySkewT_Axes.addProfile(pressure,temperature, dewPointTemperature ,
 hPa=True, celsius=True, method=0, diagnostics=True)

Show the figure
mySkewT_Figure.show()

[image: ../_images/soundingPlot.png]
Lets now complicate the things a little bit and show one of the new capabilities
of the package. Let suppose that we want to compare two soundings, with the
parcel analysis, and plot them side to side:

#Load the sounding data
mySounding1 = sounding("./bna_day1.txt")
mySounding2 = sounding("./bna_day2.txt")

Create a Figure Manager with a suitable size for both plots
mySkewT_Figure = figure(figsize=(9,5))

Now we want to create two axes side to side

Add the first Skew-T axes to the Figure
mySkewT_Axes1 = mySkewT_Figure.add_subplot(121, projection='skewx',tmin=-40)

Extract the data from the Sounding
pressure = mySounding1['pres']
temperature = mySounding1['temp']
dewPointTemperature = mySounding1['dwpt']

Add a profile to the Skew-T diagram
mySkewT_Axes1.addProfile(pressure,temperature, dewPointTemperature ,
 hPa=True, celsius=True, method=0, diagnostics=False)

mySkewT_Axes1.set_title("Day 1 Sounding")

Add the second Skew-T axes to the Figure
mySkewT_Axes2 = mySkewT_Figure.add_subplot(122, projection='skewx',tmin=-40)

Extract the data from the Sounding
pressure = mySounding2['pres']
temperature = mySounding2['temp']
dewPointTemperature = mySounding2['dwpt']

Add a profile to the Skew-T diagram
mySkewT_Axes2.addProfile(pressure,temperature, dewPointTemperature ,
 hPa=True, celsius=True, method=0, diagnostics=False)

mySkewT_Axes2.set_title("Day 2 Sounding")

Show the figure
mySkewT_Figure.show_plot()

[image: ../_images/twoSoundingsPlots.png]
The different sounding sources supported to initialize the
sounding class are described
in greater detail in the next chapter:
Sounding Initialization

Sounding Initialization

The sounding class supports the following
initialization modes:

	From a University of Wyoming txt file

	From a University of Wyoming Website

	Form an ARM sounding Netcdf file

	From a dictionary with the field names, field values pairs

	Adding individual fields manually

University of Wyoming Sounding Data

Fetch from txt file

The easiest way to get sounding data is to visit the University of
Wyoming’s website:

http://weather.uwyo.edu/upperair/sounding.html

To get some sounding data, follow the link and find the date, and location
you are interested in, view the data as a text file and just save the file
to your system. If you want to get loads of data please be considerate about
the way you go about doing this! (Lots of wget requests makes the server
administrators unhappy).

You can also pass your own data to SkewT by writing a text file in
identical format to the University of Wyoming files, which are
constant-width columns. Here’s a sample of the first few lines of one of the
bundled examples:

94975 YMHB Hobart Airport Observations at 00Z 02 Jul 2013

 PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV
 hPa m C C % g/kg deg knot K K K

 1004.0 27 12.0 10.2 89 7.84 330 14 284.8 306.7 286.2
 1000.0 56 12.4 10.3 87 7.92 325 16 285.6 307.8 286.9
 993.0 115 12.8 9.7 81 7.66 311 22 286.5 308.1 287.9

From now on, it’s assumed that the package is installed and the current working
directory is the examples one, included in this package.

To read a sounding from a txt file and create a quick plot using the default
parameters we only have to do:

from SkewTplus.sounding import sounding

#Load the sounding data
mySounding = sounding("./exampleSounding.txt",fileFormat='txt')

#Do a quick plot
mySounding.quickPlot()

The resulting plot will look like this:

[image: ../_images/soundingQuickView.png]

Fetch from University Of Wyoming Website

The sounding class supports getting University of Wyoming sound data
directly from the UWYO website, we only need to specify the date and
the station id.

For example, to initialize the class with with the sounding from “72558 OAX Omaha”
station, at April 10th of 2017 OO UTC we simple do:

from SkewTplus.sounding import sounding

#Load the sounding data
mySounding = sounding("20170410:00",fileFormat='web', stationId= "OAX")

#Do a quick plot
mySounding.quickPlot()

ARM Sounding Data

The sounding class also supports
initialization from ARM sounding data (Netcdf files). For example:

from SkewTplus.sounding import sounding

#Load the sounding data
mySounding = sounding("./armSoundingExample.cdf",fileFormat='arm')

#Do a quick plot
mySounding.quickPlot()

From a dictionary

The sounding class can be initialized from a dictionary
with “field names” , “field values” pairs.
The Temperature should be in Celsius degrees and the pressure in hPa.

The next is an example of a dictionary initialization used to plot a sounding from a WRF
output file:

from netCDF4 import Dataset
import numpy
from SkewTplus.sounding import sounding

#Load the WRF File
wrfOutputFile = Dataset("wrfOutputExample.nc")
theta = wrfOutputFile.variables["T"][:] + 300 # Potential temperature

Pressure in hPa
pressure = (wrfOutputFile.variables['P'][:] + wrfOutputFile.variables['PB'][:])

qvapor = wrfOutputFile.variables['QVAPOR'][:]

qvapor = numpy.ma.masked_where(qvapor <0.00002, qvapor)

T0 = 273.15
referencePressure = 100000.0 # [Pa]
epsilon = 0.622 # Rd / Rv

Temperatures in Celsius
temperature = theta* numpy.power((pressure / referencePressure), 0.2854) - T0
vaporPressure = pressure * qvapor / (epsilon + qvapor)

dewPointTemperature = 243.5 / ((17.67 / numpy.log(vaporPressure * 0.01 / 6.112)) - 1.) #In celsius
dewPointTemperature = numpy.ma.masked_invalid(dewPointTemperature)

Now we have the pressure, temperature and dew point temperature in the whole domain

Select one vertical column , t =0 , x=30, y=30

inputData = dict(pressure=pressure[0,:,30,30]/100,
 temperature=temperature[0,:,30,30],
 dewPointTemperature=dewPointTemperature[0,:,30,30])

mySounding = sounding(inputData)
mySounding.quickPlot()

Adding Fields Manually

The sounding class supports an empty initialization (without any fields).
With the addField() method, new fields can be added to the class.
With this kind of initialization full control ever the fields added can be obtained.
Internally, the class stores the field data values as soundingArray classes.
This class is a MaskedArray [https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray] with metadata (long Name,units and missing data value).

To exemplify the use of this initialization, the previous example of the sounding with WRF data coded to
use the addField() method:

from netCDF4 import Dataset
import numpy
from SkewTplus.sounding import sounding

#Load the WRF File
wrfOutputFile = Dataset("wrfOutputExample.nc")
theta = wrfOutputFile.variables["T"][:] + 300 # Potential temperature

Pressure in hPa
pressure = (wrfOutputFile.variables['P'][:] + wrfOutputFile.variables['PB'][:])

qvapor = wrfOutputFile.variables['QVAPOR'][:]

qvapor = numpy.ma.masked_where(qvapor <0.00002, qvapor)

T0 = 273.15
referencePressure = 100000.0 # [Pa]
epsilon = 0.622 # Rd / Rv

Temperatures in Celsius
temperature = theta* numpy.power((pressure / referencePressure), 0.2854) - T0
vaporPressure = pressure * qvapor / (epsilon + qvapor)

dewPointTemperature = 243.5 / ((17.67 / numpy.log(vaporPressure * 0.01 / 6.112)) - 1.) #In celsius
dewPointTemperature = numpy.ma.masked_invalid(dewPointTemperature)

Now we have the pressure, temperature and dew point temperature in the whole domain

Select one vertical column , t =0 , x=30, y=30

mySounding = sounding() # Create an empty sounding

#Add fields
mySounding.addField('pressure', pressure[0,:,30,30], "Pressure", "Pa")
mySounding.addField('temperature', temperature[0,:,30,30], "Temperature", "C")
mySounding.addField('dewPointTemperature', dewPointTemperature[0,:,30,30], "Dew Point Temperature", "C")

mySounding.quickPlot()

The profile plotting capabilities are described in greater detail in the next chapter:
Profile Plotting

Profile Plotting

In this chapter the profile plotting capabilities are described of the SkewTplus
package are described in greater detail.

In the following example show how to plot two soundings in the same
Skew-T diagram without any parcel analysis:

from SkewTplus.skewT import figure
from SkewTplus.sounding import sounding

#Load the sounding data
mySounding1 = sounding("./bna_day1.txt")
mySounding2 = sounding("./bna_day2.txt")

Create a Figure Manager with a suitable size for both plots
mySkewT_Figure = figure(figsize=(5,6))

Add the Skew-T axes to the Figure
mySkewT_Axes1 = mySkewT_Figure.add_subplot(111, projection='skewx',tmin=-40)

Add one profile to the Skew-T diagram
The line style is set to be a solid line and a label is added
to the plot. Since the label is not None, a legend will be added
automatically to the plot
mySkewT_Axes1.addProfile(*mySounding1.getCleanSounding(),
 hPa=True, celsius=True, parcel=False,
 label='Day 1', linestyle='-')

Add a second profile to the Skew-T diagram
The line style is set to be a dashed line
The location of the legend is specified to be
'center right'
mySkewT_Axes1.addProfile(*mySounding2.getCleanSounding(),
 hPa=True, celsius=True, parcel=False,
 label='Day 2', linestyle='--',loc='center right')

Show the figure
mySkewT_Figure.show_plot()

[image: ../_images/soundingPlot2.png]
For more details about the different profile plotting options see
SkewTplus.skewT.SkewXAxes.addProfile()

In the next chapter the Parcel Analysis included in the SkewTplus
package are described in greater detail:
Parcel Analysis

Parcel Analysis

The SkewTplus package comes with the SkewTplus.thermodynamics module
that allows the following computations for a parcel:

	SkewTplus.thermodynamics.parcelAnalysis()

	SkewTplus.thermodynamics.liftParcel()

	SkewTplus.thermodynamics.moistAscent()

	SkewTplus.thermodynamics.getLCL()

parcelAnalysis Function

The SkewTplus.thermodynamics.parcelAnalysis() function not only supports computations on 1D vertical soundings,
also it allows to do the analysis in a 3D domain (height,latitude or y ,longitude or x)
or 4D=(3D + time) ones (time,height,latitude or y ,longitude or x].

Below is simple example of how to perform a parcel analysis, print the results
and then plot the parcel trajectory.
For this example you need netCDF4 and Basemap packages installed:

from SkewTplus.skewT import figure
from SkewTplus.sounding import sounding
from SkewTplus.thermodynamics import parcelAnalysis, liftParcel

#Load the sounding data
mySounding = sounding("./exampleSounding.txt")

pressure, temperature, dewPointTemperature = mySounding.getCleanSounding()

Perform a parcel analysis
The full parcel analysis field is returned
Most Unstable parcel : method=0
Start looking for the most unstable parcel from the first level (initialLevel=0)
Use at maximum 5 iterations in the bisection method to find the LCL
Since the sounding temperature and pressure are expressed in Celsius and hPa
we set the corresponding keywords
myParcelAnalysis = parcelAnalysis(pressure,
 temperature,
 dewPointTemperature,
 hPa=True,
 celsius=True,
 fullFields=1,
 method=1,
 initialLevel=0,
 tolerance=0.1,
 maxIterations=20)

Print the contents of the dictionary
for key,value in myParcelAnalysis.items():
 if isinstance(value, float) :
 print("%s = %.1f"%(key,value))
 else:
 print("%s = %s"%(key,str(value)))

#Plot the parcel trajectory in the SkewT diagram

First we lift the parcel adiabatically
initialLevel = myParcelAnalysis['initialLevel']

parcelTemperature = liftParcel(temperature[initialLevel],
 pressure,
 myParcelAnalysis['pressureAtLCL'],
 initialLevel=initialLevel,
 hPa=True,
 celsius=True)

Create a Figure Manager
mySkewT_Figure = figure()

Add an Skew-T axes to the Figure
mySkewT_Axes = mySkewT_Figure.add_subplot(111, projection='skewx')

Plot the parcel temperature
mySkewT_Axes.plot(parcelTemperature, pressure, linewidth=3, color='r')

Add a marker for the LCL and the LFC
mySkewT_Axes.plot(myParcelAnalysis['temperatureAtLCL'],
 myParcelAnalysis['pressureAtLCL'],
 marker='o', color='b' , label='LCL')
mySkewT_Axes.plot(myParcelAnalysis['temperatureAtLFC'],
 myParcelAnalysis['pressureAtLFC'],
 marker='o', color='g' , label='LFC')

Add a legend
mySkewT_Axes.legend(loc='center right')

mySkewT_Axes.set_title("Single Parcel Lifted adiabatically")

mySkewT_Figure.show_plot()

[image: ../_images/parcelAnalysisExample.png]
In the next chapter, a more intensive use of the parcelAnalysis function is
used to compute CAPE for a 3D domain from a WRF output file: WRF Output CAPE plot

WRF Output CAPE plot

The SkewTplus.thermodynamics.parcelAnalysis() function allows to compute
CAPE and CIN not only in a single vertical sounding, it also supports the computation
over 3D domains (height, latitude or y , longitude or x)
or 4D=(3D + time) ones (time, height, latitude or y, longitude or x].

Here is an example for computing CAPE from a WRF output file and plot the values
as a color plot over a map:

from mpl_toolkits.basemap import Basemap
from netCDF4 import Dataset
import numpy

from SkewTplus.thermodynamics import parcelAnalysis
import matplotlib.pyplot as plt

#Load the WRF File
wrfOutputFile = Dataset("wrfOutputExample.nc")

theta = wrfOutputFile.variables["T"][:] + 300 # Potential temperature
pressure = wrfOutputFile.variables['P'][:] + wrfOutputFile.variables['PB'][:]

qvapor = wrfOutputFile.variables['QVAPOR'][:]

qvapor = numpy.ma.masked_where(qvapor <0.00002, qvapor)

T0 = 273.15
referencePressure = 100000.0 # [Pa]
epsilon = 0.622 # Rd / Rv

temperature = theta* numpy.power((pressure / referencePressure), 0.2854) - T0

vaporPressure = pressure * qvapor / (epsilon + qvapor)

dewPointTemperature = 243.5 / ((17.67 / numpy.log(vaporPressure * 0.01 / 6.112)) - 1.) #In celsius
dewPointTemperature = numpy.ma.masked_invalid(dewPointTemperature)

Now we have the pressure, temperature and dew point temperature in the whole domain
Compute the parcel analysis for each vertical column and each time
#
fullFields =0 , only return CAPE and CIN
Most Unstable parcel : method=0
Start looking for the most unstable parcel from the first level (initialLevel=0)
Use at maximum 5 iterations in the bisection method to find the LCL
Since the sounding temperature and pressure are expressed in Celsius and hPa
we set the corresponding keywords
myParcelAnalysis = parcelAnalysis(pressure,
 temperature,
 dewPointTemperature,
 hPa=False,
 celsius=True,
 fullFields=0,
 method=0,
 initialLevel=0,
 tolerance=0.1,
 maxIterations=20)

Create the Base Map for the CAPE color plot

Read the temperature and pressure fields
lon = wrfOutputFile.variables["XLONG"][0, :, :]
lat = wrfOutputFile.variables["XLAT"][0, :, :]

#---Read lat,lon for plotting
lon = wrfOutputFile.variables["XLONG"][0, :, :]
lat = wrfOutputFile.variables["XLAT"][0, :, :]

Define and plot the meridians and parallels
min_lat = numpy.amin(lat)
max_lat = numpy.amax(lat)
min_lon = numpy.amin(lon)
max_lon = numpy.amax(lon)

Create the basemap object
myBaseMap = Basemap(projection="merc",
 llcrnrlat=min_lat,
 urcrnrlat=max_lat,
 llcrnrlon=min_lon,
 urcrnrlon=max_lon,
 resolution='h')

Create the figure and add axes
myFigure = plt.figure(figsize=(8,8))
myAxes = myFigure.add_axes([0.1,0.1,0.8,0.8])

Make only 5 parallels and meridians
parallel_spacing = (max_lat - min_lat) / 5.0
merid_spacing = (max_lon - min_lon) / 5.0
parallels = numpy.arange(min_lat, max_lat, parallel_spacing)
meridians = numpy.arange(min_lon, max_lon, merid_spacing)

myBaseMap.drawcoastlines(linewidth=1.5)
myBaseMap.drawparallels(parallels,labels=[1,0,0,0],fontsize=10)
myBaseMap.drawmeridians(meridians,labels=[0,0,0,1],fontsize=10)

Plot CAPE at time 0
CAPE = myParcelAnalysis['CAPE'][0,:]

myColorPlot = myBaseMap.pcolormesh(lon,lat, myParcelAnalysis['CAPE'][0,:],latlon=True, cmap='jet')

Create the colorbar
cb = myBaseMap.colorbar(myColorPlot,"bottom", size="5%", pad="5%")
cb.set_label("CAPE [J/kg]")

Set the plot title
myAxes.set_title("CAPE")

plt.show()

[image: ../_images/wrfOutputCAPE.png]

Developer Reference

The intended audience of this guide is mainly to developers who use skewTplus.
It also serves as a more comprehesive description of the packages modules.
For a more general introduction aimed at users see the User Reference.

This guide provides documentation for all modules, function, methods, and classes within SkewTplus
both those in the public API and private members.

Documentation is broken down by module (in order of relevance)

	SkewTplus.sounding module

	SkewTplus.skewT module

	SkewTplus.thermodynamics module

	SkewTplus._thermodynamics module

	SkewTplus.errorHandling module

SkewTplus.sounding module

SkewTplus.skewT module

SkewTplus.thermodynamics module

SkewTplus._thermodynamics module

SkewTplus.errorHandling module

SkewTplus – License

Copyright (c) 2017, Andres A. Perez Hortal
Department of Atmospheric and Oceanic Sciences
McGill University
Montreal, Canada
All rights reserved.

BSD-3-Clause License

https://opensource.org/licenses/BSD-3-Clause

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the McGill University
Department of Atmospheric and Oceanic Sciences,
nor the names of the package contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The following copyright information is retained for the parts of the package
that were provided originally. These include the SkewT package
and related copyright notices, as indicated within the source code.

Copyright (c) 2014, Thomas Chubb
School of Mathematical Sciences
Monash University
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the Monash University School of Mathematical
Sciences nor the names of the package contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The following copyright information is retained for the parts of the package
that were provided originally. These include the matplotlib SkewAxes classes
amongst others, as indicated within the source code.

#Copyright (c) 2008 Ryan May

#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the “Software”), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:

#The above copyright notice and this permission notice shall be included in
#all copies or substantial portions of the Software.

#THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#THE SOFTWARE.

Index

SkewTplus package

Submodules

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/soundingQuickView.png
Sounding

100 Diagnostics:
< P_par: 925.0hPa
PLCL: 918.2hPa
TLeLiz.2c
PLFC: 819.8hPa
200 T_LFCi12.8¢
~ PEL: 364.7hPa
. CAPE:242.2
300 S CIN: 10.2)
00 |
500
600 f S
vy
800 L 4
8001 /\ L - I
1000 4
30 20 -0 0 0 20 30 0 50

Temperature (C)

_images/twoSoundingsPlots.png
100

Day 1 Sounding

Day 2 Sounding

100

200 200

300 4 300

400 400

500 500

600 - 600

200 o I > ¢
40 /; Ny

o LTI e \/‘—\wz //%/w

200 KR A 200 YAAR Y]

1000 AT 1000 a R (AN S11:1%)

—40 -30 -20 10 0 10 20 30 40 50

Temperature (C)

—40 -30 20 -10 0 10 20 30

Temperature (C)

40 50

_images/soundingPlot.png
Sounding

100 Diagnostics:
< P_par: 925.0hPa
PLCL: 918.2hPa
TLeLiz.2c
PLFC: 819.8hPa
200 T_LFCi12.8¢
~ PEL: 364.7hPa
. CAPE:242.2
300 S CIN: 10.2)
00 |
500
600 f S
vy
800 L 4
8001 /\ L - I
1000 4
30 20 -0 0 0 20 30 0 50

Temperature (C)

_images/soundingPlot2.png
Soundin
100 9

305 %\, 309
N

200

300 4

400

500

600

700 4

800
900
1000

—40 -30 -20 -10 0 10 20 30 40 50
Temperature (C)

_images/wrfOutputCAPE.png
CAPE

32.7941°N

29.3725°N &

25.9508°N

22.5291°N

101.008°W 96.2047°W 91.4016°W 86.5984°W 81.7953°W

1000 2000 3000 4000 5000
CAPE [J/kg]

_static/plus.png

nav.xhtml

 Table of Contents

 		
 SkewTplus – Atmospheric Profile Plotting and Diagnostics

 		
 User Reference

 		
 Fist-Steps

 		
 Fist steps using SkewTplus

 		
 Sounding Initialization

 		
 University of Wyoming Sounding Data

 		
 ARM Sounding Data

 		
 From a dictionary

 		
 Adding Fields Manually

 		
 Profile Plotting

 		
 Parcel Analysis

 		
 parcelAnalysis Function

 		
 WRF Output CAPE plot

 		
 Developer Reference

 		
 SkewTplus.sounding module

 		
 SkewTplus.skewT module

 		
 SkewTplus.thermodynamics module

 		
 SkewTplus._thermodynamics module

 		
 SkewTplus.errorHandling module

 		
 SkewTplus – License

_static/up.png

_images/parcelAnalysisExample.png
100 Single Parcel Lifted adiabatically

200

300

400 4

500

600

700 4

800
900
1000

-30

Temperature (C)

_static/up-pressed.png

